The correct answer is (c) \(cos^{-1}\frac{1}{\sqrt{132}}\)
The explanation: Given that, the normal to the planes are \(\vec{n_1}=2\hat{i}-\hat{j}+\hat{k}\) and \(\vec{n_2}=3\hat{i}+2\hat{j}-3\hat{k}\)
cosθ=\(\left |\frac{\vec{n_1}.\vec{n_2}}{|\vec{n_1}||\vec{n_2}|}\right |\)
\(|\vec{n_1}|=\sqrt{2^2+(-1)^2+1^2}=\sqrt{6}\)
\(|\vec{n_2}|=\sqrt{3^2+2^2+(-3)^2}=\sqrt{22}\)
\(\vec{n_1}.\vec{n_2}\)=2(3)-1(2)+1(-3)=6-2-3=1
cosθ=\(\frac{1}{\sqrt{22}.\sqrt{6}}=\frac{1}{\sqrt{132}}\)
∴θ=\(cos^{-1}\frac{1}{\sqrt{132}}\).