To estimate the kinematic viscosity (ν\nuν), we can use the relationship between dynamic viscosity (μ\muμ) and density (ρ\rhoρ):
ν=μρ\nu = \frac{\mu}{\rho}ν=ρμ
Given Data:
- Dynamic viscosity (μ\muμ): 1.3×10−31.3 \times 10^{-3}1.3×10−3 Pa·s.
- Density (ρ\rhoρ): 1010 kg/m31010 \, \text{kg/m}^31010kg/m3.
Step-by-Step Calculation:
Convert the units: The dynamic viscosity is in Pa·s, and density is in kg/m³. To ensure the correct units for kinematic viscosity (m²/s), we can directly use the formula with the given units.
Apply the formula:
ν=1.3×10−3 Pa\cdotps1010 kg/m3\nu = \frac{1.3 \times 10^{-3} \, \text{Pa·s}}{1010 \, \text{kg/m}^3}ν=1010kg/m31.3×10−3Pa\cdotps
Since 1 Pa·s = 1 kg/(m·s), we can simplify the units:
ν=1.3×10−31010\nu = \frac{1.3 \times 10^{-3}}{1010}ν=10101.3×10−3 ν=1.29×10−6 m2/s\nu = 1.29 \times 10^{-6} \, \text{m}^2/\text{s}ν=1.29×10−6m2/s
Answer:
(b) 1.29 × 10⁻⁶ m²/s
This is the correct value for the kinematic viscosity of the microcarrier suspension.