To solve this, use the principle of continuity, which states that the flow rate remains constant in an incompressible fluid:
A1⋅v1=A2⋅v2A_1 \cdot v_1 = A_2 \cdot v_2A1⋅v1=A2⋅v2
where:
- A1A_1A1 and A2A_2A2 are the cross-sectional areas of the pipe at the two points,
- v1v_1v1 and v2v_2v2 are the velocities of the fluid at these points.
Step 1: Find A1A_1A1 and A2A_2A2
Initial radius r1=6 cmr_1 = 6 \, \text{cm}r1=6cm (or 0.06 m)
A1=π(0.06)2=0.0036π m2A_1 = \pi (0.06)^2 = 0.0036\pi \, \text{m}^2A1=π(0.06)2=0.0036πm2New radius r2=2 cmr_2 = 2 \, \text{cm}r2=2cm (or 0.02 m)
A2=π(0.02)2=0.0004π m2A_2 = \pi (0.02)^2 = 0.0004\pi \, \text{m}^2A2=π(0.02)2=0.0004πm2
Step 2: Apply the Continuity Equation
Given:
- Initial velocity v1=5 m/sv_1 = 5 \, \text{m/s}v1=5m/s.
0.0036π⋅5=0.0004π⋅v20.0036\pi \cdot 5 = 0.0004\pi \cdot v_20.0036π⋅5=0.0004π⋅v2
Solving for v2v_2v2:
v2=0.0036⋅50.0004=0.0180.0004=45 m/sv_2 = \frac{0.0036 \cdot 5}{0.0004} = \frac{0.018}{0.0004} = 45 \, \text{m/s}v2=0.00040.0036⋅5=0.00040.018=45m/s
So, the correct answer is:
None of the options provided (the correct answer should be 45 m/s).