+1 vote
164 views
in Bioprocess Engineering by (79.8k points)
Which size of bubbles is relevant for mass transfer?

(a) Small

(b) Very small

(c) Large

(d) Very large

I got this question in a job interview.

My question is taken from Oxygen Transfer in Fermenters in section Mass Transfer of Bioprocess Engineering

1 Answer

+1 vote
by (773k points)
selected by
 
Best answer
Correct answer is (a) Small

To explain I would say: The most important property of air bubbles in fermenters is their size. Small bubbles have correspondingly slow bubble-rise velocities; consequently they stay in the liquid longer, allowing more time for the oxygen to dissolve. While it is desirable to have small bubbles, there are practical limits. Bubbles << 1 mm diameter can become a nuisance in bioreactors. Oxygen concentration in these bubbles equilibrates with that in the medium within seconds, so that the gas hold-up no longer reflects the capacity of the system for mass transfer.

Related questions

Welcome to TalkJarvis QnA, a question-answer community website for the people by the people. On TalkJarvis QnA you can ask your doubts, curiosity, questions and whatever going in your mind either related to studies or others. Experts and people from different fields will answer.

Most popular tags

biology – class 12 biology – class 11 construction & building materials chemistry – class 12 electronic devices & circuits network theory data structures & algorithms ii cell biology ic engine insurance finance money computational fluid dynamics engineering physics i discrete mathematics chemistry – class 11 aerodynamics casting-forming-welding i engineering mathematics operating system casting-forming-welding ii engineering drawing mysql engineering geology digital circuits wireless mobile energy management electrical measurements digital communications cyber security analytical instrumentation embedded systems electric drives cytogenetics computer fundamentals life sciences basic civil engineering advanced machining iot design of electrical machines physics – class 12 applied chemistry dairy engineering basic chemical engineering cloud computing microprocessor bioinformatics aircraft design aircraft maintenance software engineering drug biotechnology digital signal processing biochemistry data structures & algorithms i automotive engine design avionics engineering material & metallurgy energy engineering cognitive radio unix electrical machines biomedical instrumentation object oriented programming electromagnetic theory power electronics analog communications bioprocess engineering civil engineering drawing engineering metrology physics – class 11 mathematics – class 12 engineering chemistry i basic electrical engineering unit processes mongodb signals and systems cryptograph & network security hadoop mathematics – class 11 engineering physics ii html control systems engineering mechanics antennas analog circuits computer network java sql server javascript concrete technology chemical process calculation artificial intelligence design of steel structures c++ database management computer architecture engineering chemistry ii corrosion engineering chemical technology dc machines
...