Right option is (d) Continuity equation
For explanation: Continuity equation is used as given below.
\(\rho\frac{De}{Dt}=\rho\frac{\partial e}{\partial t}+\rho\vec{V}.\nabla e \)
But,
\(\rho\frac{\partial e}{\partial t}=\frac{\partial(\rho e)}{\partial t}-e\frac{\partial \rho}{\partial t}\)
And
\(\rho\vec{V}.\nabla e=\nabla.(\rho e\vec{V})-e\nabla.(\rho \vec{V})\)
Therefore,
\(\rho\frac{De}{Dt}=\frac{\partial(\rho e)}{\partial t}-e\frac{\partial \rho}{\partial t}+\nabla.(\rho e\vec{V})-e\nabla.(\rho \vec{V})\)
\(\rho\frac{De}{Dt}=\frac{\partial(\rho e)}{\partial t}-e(\frac{\partial \rho}{\partial t}+\nabla.(\rho \vec{V}))+\nabla.(\rho e\vec{V})\)
Applying the continuity equation, \(\frac{\partial \rho}{\partial t}+\nabla.(\rho \vec{V})=0\), and hence
\(\rho\frac{De}{Dt}=\frac{\partial(\rho e)}{\partial t}+\nabla.(\rho e\vec{V})\).