Right choice is (b) \(P_i=\frac{b_i}{a_i-c_i P_{i-1}};Q_i=\frac{c_i Q_{i-1}+d_i}{a_i-c_i P_{i-1}}\)
Best explanation: As given,
Φi = PiΦi+1+Qi
Φi-1 = Pi-1Φi+Qi-1
The i^th equation is,
aiΦi = bi Φi+1 + ciΦi-1 + di
aiΦi = bi Φi+1 + ci(Pi-1Φi + Qi-1) + di
aiΦi – ciPi-1Φi = bi Φi+1+ciQi-1+di
Φi(ai-ci Pi-1) = biΦi+1+ci Qi-1+di
\(\Phi_i = \frac{b_i}{a_i-c_i P_{i-1}}\Phi_{i+1} + \frac{c_i Q_{i-1}+d_i}{a_i-c_i P_{i-1}} \)
Therefore,
\(P_i = \frac{b_i}{a_i-c_i P_{i-1}};Q_i=\frac{C_i Q_{i-1}+d_i}{a_i-c_i P_{i-1}}\).