To find the transfer function H(s)H(s)H(s) of the system, we analyze the given input and output signals in the Laplace domain.
Input r(t)=1−e−tr(t) = 1 - e^{-t}r(t)=1−e−t has the Laplace transform:
R(s)=1s−1s+1=1s(s+1)R(s) = \frac{1}{s} - \frac{1}{s+1} = \frac{1}{s(s+1)}R(s)=s1−s+11=s(s+1)1Output c(t)=1−e−2tc(t) = 1 - e^{-2t}c(t)=1−e−2t has the Laplace transform:
C(s)=1s−1s+2=2s(s+2)C(s) = \frac{1}{s} - \frac{1}{s+2} = \frac{2}{s(s+2)}C(s)=s1−s+21=s(s+2)2
The transfer function H(s)H(s)H(s) is given by H(s)=C(s)R(s)H(s) = \frac{C(s)}{R(s)}H(s)=R(s)C(s):
H(s)=2s(s+2)1s(s+1)=2(s+1)s+2H(s) = \frac{\frac{2}{s(s+2)}}{\frac{1}{s(s+1)}} = \frac{2(s+1)}{s+2}H(s)=s(s+1)1s(s+2)2=s+22(s+1)
So, the correct answer is:
(c) 2(s+1)s+2\frac{2(s+1)}{s+2}s+22(s+1)