The correct choice is (c) Contain unit circle
The best explanation: A discrete time LTI is BIBO stable, if and only if its impulse response h(n) is absolutely summable. That is,
\(\sum_{n=-\infty}^{\infty}|h(n)|<\infty\)
We know that, H(z)= \(\sum_{n=-\infty}^{\infty}h(n)z^{-n}\)
Let z=e^jω so that |z|=|e^jω|=1
Then, |H(e^jω)|=|H(ω)|=| \(\sum_{n=-\infty}^{\infty}\)h(n) e^-jωn|≤\(\sum_{n=-\infty}^{\infty}\)|h(n) e^-jωn|
=\(\sum_{n=-\infty}^{\infty}\)|h(n)|<∞
Hence, we see that if the system is stable, then H(z) converges for z=e^jω. That is, for a stable discrete time LTI system, ROC of H(z) must contain the unit circle |z|=1.