Correct option is (c) ωc/π
For explanation: We know that, x(n)=\(\frac{1}{2\pi} \int_{-\pi}^{\pi}X(\omega)e^{j\omega n} dω\)
=\(\frac{1}{2\pi} \int_{-ω_c}^{ω_c}1.e^{j\omega n} dω\)
At n=0,
x(n)=x(0)=\(\int_{-ω_c}^{ω_c}1 dω=\frac{1}{2\pi}(2 ω_c)=\frac{ω_c}{\pi_ω}\)
Therefore, the value of the signal x(n) at n=0 is ωc/π.