Right choice is (b) –\(\sum_{n=-∞}^∞ x(n)sin(ωn)\)
The best explanation: If the signal x(n) is real, then xI(n)=0
We know that,
XI(ω)=\(\sum_{n=-∞}^∞ x_R (n)sinωn-x_I (n)cosωn\)
Now substitute xI(n)=0 in the above equation=>xR(n)=x(n)
=> XI(ω)=-\(\sum_{n=-∞}^∞ x(n)sin(ωn)\).