The correct answer is (b) \(\frac{2}{\sqrt{5}} Ae^{j(\frac{nπ}{2}-26.6°)}\)
To elaborate: First we evaluate the Fourier transform of the impulse response of the system h(n)
H(ω)=\(\sum_{n=-∞}^∞ h(n) e^{-jωn} = \frac{1}{1-1/2 e^{-jω}}\)
At ω=π/2, the above equation yields,
H(π/2)=\(\frac{1}{1+j 1/2}=\frac{2}{\sqrt{5}} e^{-j26.6°}\)
We know that if the input signal is a complex exponential signal, then y(n)=x(n) . H(ω)
=>y(n)=\(\frac{2}{\sqrt{5}} Ae^{j(\frac{nπ}{2}-26.6°)}\)