The correct answer is (b) y(nT) = \(\frac{T}{2} [y^{‘} (nT)+y^{‘} (nT-T)]+y(nT-T)\)
The explanation: By integrating the equation,
y(t) = \(\int_{t_0}^t y^{‘} (τ)dt+y(t_0)\) at t=nT and t0=nT-T we get equation,
y(nT) = \(\frac{T}{2} [y^{‘} (nT)+y^{‘} (nT-T)]+y(nT-T)\).