The correct answer is (d) 3, 5
To elaborate: By using the property if logax = logay then x=y, gives 2x^2-3x=10-6x. Now, to solve the equation x^2-3x-5x+15=0 ⇒ x^2-8x+15 ⇒ x=3, x=5
For x=3: log2(3^2-3*3) = log2(5*3-15) ⇒ true
For x=5: log2(5^2-3*5) = log2(5*5-15) ⇒ true
The solutions to the equation are : x=3 and x=5.