Correct choice is (b) m≤5/3(n−2)
The best explanation: Because G is connected and planar, Euler’s theorem is bound to be involved. Let f denote the number of faces so that n−m+f=2. Because the length of the smallest cycle in G is 5, every face has at least 5 edges adjacent to it. This means 2m≥5f because every edge is adjacent to two faces. Plugging this in yields 2=n−m+f≤n−m+2/5m=n−3/5m, and hence m≤5/3(n−2).