Right option is (c) 8.33%
Easy explanation: Here, R1 and R2 are in parallel.
Then, \(\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}\)
Or, R = \(\frac{50}{15}\) kΩ
∴\( \frac{△R}{R} = \frac{△R_1}{R_1^2} + \frac{△R_2}{R_2^2}\)
And △R1 = 0.5×10^3, △R2 = 0.5×10^3
∴\( \frac{△R}{R} = \frac{10 × 10^3}{3 × 10 × 10^3} × \frac{0.5 × 10^3}{10 × 10^3} + \frac{10}{3} × \frac{10^3}{5 × 10^3} × \frac{0.5 × 10^3}{5 × 10^3}\)
= \( \frac{0.5}{30} + \frac{1}{15} = \frac{2.5}{30}\) = 8.33%.