Correct answer is (b) \frac{E}{R-La} \left(e^{-at}-e^{\frac{-Rt}{L}}\right)
The explanation: The differential equation for the circuit is derived based on Kirchhoff’s voltage law and it is given by L \frac{di}{dt} + Ri = E \rightarrow \frac{di}{dt} + \frac{R}{L} \,i = \frac{Ee^{-at}}{L} this is of the form \frac{dy}{dx} + Px = Q
its solution is ie^{\frac{Rt}{L}} = \int e^{\frac{Rt}{L}} * \frac{Ee^{-at}}{L} \,dt + c = \frac{E}{L} \int e^{(\frac{R}{L}-a)t} \,dt + c
ie^{\frac{Rt}{L}} = \Big\{\frac{E}{L} * e^{(\frac{R}{L}-a)t} * \frac{1}{(\frac{R}{L}-a)}\Big\} + c = \frac{E}{R-La} * e^{(\frac{R}{L}-a)t} + c
i = \frac{Ee^{-at}}{L-Ra} + ce^{\frac{-Rt}{L}}….(1) using i(0)=0 we get c=\frac{-E}{R-La}
substituting in (1)
i(t) = \frac{E}{R-La} \left(e^{-at}-e^{\frac{-Rt}{L}}\right).