Right choice is (c) \(\frac{p}{s^2+p^2}×coth(\frac{s\pi}{2p})\)
Best explanation: From this question, we know –
Period of sin(t)=2π
Period of sin(pt)=\(\frac{2\pi}{p}\)
Period of |sin(pt)|=\(\frac{\pi}{p}\)
\(L(f(t))=\frac{1}{1-e^{\frac{-\pi}{ps}}} \int_{0}^{\frac{\pi}{p}}e^{-st} f(t)dt\)
Since |sin(pt)| is positive in all quadrants
\(L(f(t))=\frac{1}{1-e^{\frac{-\pi}{ps}}} \int_{0}^{\frac{\pi}{p}}e^{-st} sin(pt)dt\)
=\(\frac{1}{1-e^{\frac{-\pi}{ps}}}\begin{bmatrix}\frac{e^{\frac{-sπ}{p}}}{s^2+p^2}×p\end{bmatrix}-\begin{bmatrix}\frac{1}{s^2+p^2}×(-p)\end{bmatrix}\)
=\(\frac{1}{1-e^{\frac{-\pi}{ps}}}×\frac{p}{s^2+p^2}×(1+e^{\frac{-π}{ps}})\)
=\(\frac{p}{s^2+p^2}×coth(\frac{s\pi}{2p})\), (Multiplying and dividing by \(e^{\frac{-sπ}{2p}}\))
Thus, the answer is \(\frac{p}{s^2+p^2}×coth(\frac{s\pi}{2p})\).