Correct choice is (a) \(8\sqrt{\pi} \frac{\Gamma(\frac{3}{4})}{\Gamma(\frac{1}{4})} \)
To explain: \(\int_0^{π/2}\sqrt{sinθdθ} + \int_0^{π/2}\sqrt{cosθdθ} \)
\( = \beta(\frac{3}{4}, \frac{1}{2}) + \beta(\frac{3}{4}, \frac{1}{2}) \)
\( = 2 \beta(\frac{3}{4}, \frac{1}{2}) \)
\( = 2\frac{\Gamma(\frac{1}{2}).\Gamma(\frac{3}{4})}{\Gamma(\frac{1}{2}+\frac{3}{4})} \)
\( = 2\sqrt{\pi} \frac{\Gamma(\frac{3}{4})}{\Gamma(\frac{1}{4})} . \frac{1}{(\frac{1}{4})} \)
\( = 8\sqrt{\pi} \frac{\Gamma(\frac{3}{4})}{\Gamma(\frac{1}{4})}. \)