Right option is (b) sY(s) – y(0)
To explain I would say: Let \(f(t) = y(t) \)
\(L[f’(t)] = \int_0^∞ e^{-st} f'(t)dt \)
\( = e^{-st} f(t)(from \, 0 \, to \, \infty) – \int_0^∞ (-s) e^{-st} f(t)dt \)
\( = -f(0) + s\int_0^{\infty} e^{-st} f(t)dt \)
\( = -f(0) + sF(s) \)
\( = sY(0) -y(0) \).