Find the curl for \((\vec{r})=y^2 z^3 \vec{i}+x^2 z^2 \vec{j}+(x-2y)\vec{k}\).
(a) \(-2\vec{i}(1+x^2 z)-\vec{j}(1-3y^2 z^2)+\vec{2k}(xz^2-yz^3)\)
(b) \(-2\vec{i}(1+x^2 z)-\vec{j}(1-3y^2 z^2)+\vec{k}(xz^2-yz^3)\)
(c) \(-2\vec{i}(1+x^2 z)-\vec{j}(1-32z^2)+\vec{2k}(xz^2-yz^3)\)
(d) \(\vec{i}(1+x^2 z)-\vec{j}(1-3y^2 z^2)+\vec{2k}(xz^2-yz^3)\)
I got this question in semester exam.
The doubt is from Using Properties of Divergence and Curl in chapter Vector Differential Calculus of Engineering Mathematics