If \(u=\frac{e^{x+y}}{e^x-e^y}\), what is \(\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}\)?
(a) \(\frac{2((e^x-e^y)×e^{x+y})-(e^{x+y}) (e^x+e^y)}{(e^x-e^y)^2} \)
(b) \(\frac{2((e^x-e^y)×e^{x+y})-(e^{x+y}) (e^x+e^y)}{(e^x+e^y)^2} \)
(c) \(\frac{2((e^x-e^y)×e^{x+y})-(e^{x+y}) (e^x-e^y)}{(e^x-e^y)^2} \)
(d) u
I have been asked this question in an online quiz.
This question is from First Order PDE topic in section Partial Differential Equations of Engineering Mathematics