The correct answer is (b) \(\frac{π}{2} e^{-ap} \)
For explanation: Fourier transform of \( e^{-ax} \, is \, \frac{p}{(a^2+p^2)} \)
Substitute x=m and p=x.
\(\frac{π}{2} e^{-am}= \int_0^∞ \frac{x}{x^2+a^2} sin(mx)dx \)
Therefore, fourier sine transform of \(\frac{x}{(a^2+x^2)} \, is \, \frac{π}{2} e^{-ap}.\)