The correct option is (a) Invertible
The explanation is: \( y (t) = ∑_{k=-∞}^n x(k)\)
Or, y (n) = x (n) + x (n-1) + x (n-2) + …….
Or, y (n+1) = x (n+1) + x (n) + (terms after this)
Or, y (n+1) = x (n+1) + y (n)
Or, y (n+2) = x (n+2) + y (n+1)
Or, y (n) = x (n) + y (n-1)
This is an alternate form of given system equation.
∴ x (n) = y (n) – y (n-1)
Taking z-transform on both sides,
X (z) = Y (z) = (1-z-1)
\(H (z) = \frac{Y(z)}{X(z)} = \frac{1}{1-z-1}\)
Or, \(\frac{w(z)}{y(z)} \)= H^-1(z) = (1-z-1)
∴ w (n) = y (n) – y (n-1)
Hence, the system is invertible.