The shifting property of the continuous-time unit impulse function, \( \delta(t) \), is given by:
\[
\delta(t - t_0) =
\begin{cases}
0, & \text{for } t \neq t_0 \\
\infty, & \text{for } t = t_0
\end{cases}
\]
and satisfies:
\[
\int_{-\infty}^{\infty} x(t) \delta(t - t_0) \, dt = x(t_0)
\]
This property essentially "samples" the function \( x(t) \) at \( t = t_0 \), isolating the value of \( x(t) \) at that point. It’s a fundamental concept used to simplify expressions and analyze systems, as it allows shifting the impulse function to any desired point \( t_0 \) in time.