Right answer is (c) sin2
The best explanation: ∑^∞n= -∞δ(n-1)sin2n
⇒ We know, δ(n) is impulse function which means δ(n)=1 when n=0
⇒ δ(n-1)=1 when n=1 otherwise it is 0.
Therefore, the summation’s limit reduces to n=1
⇒ ∑^∞n= -∞δ(n-1)sin2n = sin2n|n=1 = sin2.