Right answer is (a) \(\frac{2(s+2)(s^2+4s-23)}{(s^2+4s+13)^3}\)
Explanation: Let g (t) = cos (3t); h (t) = e^-2x cos (3t) = e^-2x g (t)
Then, f (t) = t^2h (t)
Let G(s) = L {g (t)}, H(s) = L {h (t)}, F(s) = L {f (t)}
So, G(s) = \(\frac{s}{s^2+9}\)
And H(s) = \(\frac{s+2}{(s+2)^2+9}\)
∴ F(s) = \(-\frac{d}{ds}[-\frac{d}{ds} H(s)] = \frac{2(s+2)(s^2+4s-23)}{(s^2+4s+13)^3}\).