Correct choice is (b) \(\frac{a^{n+1} – b^{n+1}}{a-b}\)
Best explanation: We know that, \(Z^{-1}{\frac{z}{z-a}} = a^n\) and\(Z^{-1}{\frac{z}{z-b}} = b^n\)
∴\(Z^{-1}\Big\{\frac{z^2}{(z-a)(z-b)}\Big\} = Z^{-1}{\frac{z}{z-a} . \frac{z}{z-b}} = a^n * b^n\)
= \(∑_{m=0}^n a^m.b^{n-m}\)
= \(b^n ∑_{m=0}^n \frac{a^m}{b}\)
= \(b^n . \frac{\frac{a^{n+1}}{b}-1}{\frac{a}{b}-1}\)
= \(\frac{a^{n+1} – b^{n+1}}{a-b}\).