Right choice is (d) 0
Easiest explanation: Given X(z) = \(\frac{z+3}{(z+1)(z+2)} = \frac{z[1+(3/z)]}{z^2 [1+(1/z)][1+(2/z)]} = \frac{1}{z} \frac{1+(3/z)}{[1+(1/z)][1+(2/z)]}\)
The initial value theorem of Z-transform states that
If x(n) ↔ X(z), then x(0) = Ltz→∞ X(z)
x(0) = Ltz→∞ X(z) = \(Lt_{z→∞} \frac{1}{z} \frac{[1+(3/z)]}{[1+(1/z)][1+(2/z)]}\) = 0.