Correct choice is (a) z^2 X(Z) – z^2 x(0) – zx(1)
To explain I would say: Given y(n) = x(n+2)u(n)
Y(z) = Z[y(n)] = Z[x(n+2)u(n)] = \(\sum\limits_{n=0}^{∞} x(n+2)u(n) z^{-n} = \sum\limits_{n=0}^{∞} x(n+2)z^{-n}\)
Let n + 2 = p,i.e.n = p – 2
Y(z) = \(∑_{p=2}^∞ x(p)z^{-(p-2)} = z^2 ∑_{p=2}^∞ x(p)z^{-p} = z^2 ∑_{p=0}^∞ x(p)z^{-p} – x(0) – x(1) z^{-1}\)
=z^2 X(Z) – z^2 x(0) – zx(1).