Correct choice is (b) (-1)^n-1 n
To explain: U (z) = \(\frac{z}{z^2+2z+1}\)
= \(z^{-1} – \frac{2+z^{-1}}{z^2+2z+1}\)
= \(z^{-1} – 2z^{-2} + \frac{2z^{-2}+3z^{-1}}{z^2+2z+1}\)
= \(z^{-1} – 2z^{-2} + 3z^{-3} – \frac{4z^{-2}+3z^{-3}}{z^2+2z+1}\)
So, U (z) = \(∑_{n=0}^∞ (-1)^{n-1} nz^{-n}\)
Hence, un = (-1)^n-1 n.