Right choice is (b) 2e^-2t cos2t u(t) – \(\frac{5}{2}\) e^-2t sin2t u(t)
Explanation: Given function X(s) = \(\frac{2s-1}{s^2+4s+8} = \frac{2s-1}{(s+2)^2+2^2} = \frac{2(s+2)-5}{(s+2)^2+2^2}\)
= \(\frac{2(s+2)}{(s+2)^2+2^2} – \frac{5}{2} \frac{2}{(s+2)^2+2^2}\)
Applying inverse Laplace transform, we get
x(t) = 2e^-2t cos2t u(t) – \(\frac{5}{2}\) e^-2t sin2t u(t).