The correct choice is (c) V = \(\frac{2}{7} V_S – \frac{4}{7} I_S\)
Explanation: By superposition, the current I is given by I = \(\frac{V_S}{5} − \frac{2}{5} × I_S − \frac{3}{5} × 3i\)
This can be solved for I to obtain, I = \(\frac{V_S}{14} – \frac{I_S}{7}\)
Now, by Superposition Theorem, V = \(\frac{V_S}{5} − \frac{2}{5} × I_S − \frac{3}{5} × 3i\)
Or, V = \(\frac{V_S}{5} − \frac{2}{5} × I_S − \frac{3}{5} × 3(\frac{V_S}{14} – \frac{I_S}{7})\)
∴ V = \(\frac{2}{7} V_S – \frac{4}{7} I_S\).