The correct option is (b) ∆f1 = 1.256 MHz; ∆f2 = 1.244 MHz
Easiest explanation: Resonant Frequency, f = \(\frac{1}{2π\sqrt{LC}} \)
= \(\frac{1}{6.28\sqrt{(100×10^{-6})(162.11×10^{-12})}}\)
= \(\frac{1}{6.28\sqrt{1.621×10^{-14}}}\)
= \(\frac{1}{799×10^{-9}}\) = 1.25 MHz.
Inductive Reactance, XL = 2πfL = (6.28) (1.25×10^6)(100×10^-6)
= 785.394 Ω
Q = \(\frac{X_L}{R} = \frac{785.394}{7.85}\) = 100.05
∴ ∆F = \(\frac{f}{Q} = \frac{1.25 × 10^6}{100.05}\) = 12.5 kHz
Hence, bandwidth = \(\frac{∆F}{2}\) = 6.25 kHz
∴ ∆f1 = f + \(\frac{∆F}{2}\) = 1.25 MHz + 6.25 kHz = 1.256 MHz
∴ ∆f1 = f – \(\frac{∆F}{2}\) = 1.25 MHz – 6.25 kHz = 1.244 MHz.