Right option is (c) VC = 16.306 V; VL = 16.306 V
Best explanation: Resonant Frequency, \(\frac{1}{2π\sqrt{LC}} \)
= \(\frac{1}{6.28\sqrt{(4.7×10^{-3})(0.001×10^{-6})}}\)
= \(\frac{1}{6.28\sqrt{4.7×10^{-12}}}\)
= \(\frac{1}{1.362×10^{-5}}\) = 73.412 kHz
Inductive Reactance, XL = 2πfL = (6.28) (73.142 × 10^3)(4.7 × 10^-6)
= 2.168 kΩ
Capacitive Reactance, XC = \(\frac{1}{2πfC} = \frac{1}{(6.28)(73.142×10^3)(0.001×10^{-6})}\)
= \(\frac{1}{4.613×10^{-4}}\) = 2.168 kΩ
ZEQ = R = 47 Ω
IT = \(\frac{V_{in}}{Z_{EQ}} = \frac{V_{in}}{R} = \frac{0.3535}{47}\) = 7.521 mA
∴ Voltage across the capacitor, VC = XCIT = (2.168 kΩ)(7.521 mA) = 16.306 V
∴ Voltage across the inductor, VL = XLIT = (2.168 kΩ)(7.521 mA) = 16.306 V.