The correct answer is (a) 14.7 A
Explanation: Using KVL, 100 = R\(\frac{dq}{dt} + \frac{q}{C} \)
Or, 100 C = RC\(\frac{dq}{dt}\) + q
Now, \(\int_{q_o}^q \frac{dq}{100C-q} = \frac{1}{RC} ∫_0^t dt\)
Or, 100C – q = (100C – qo) e^-t/RC
I = \(\frac{dq}{dt} = \frac{(100C – q_0)}{RC} e^{-1/1}\)
= 40e^-1 = 14.7 A.