Correct answer is (d) y22 = \(\frac{D’}{B’}\)
For explanation I would say: We know that, V2 = A’V1 – B’I1 ……… (1)
I2 = C’V1 – D’I1 …………… (2)
And, I1 = y11 V1 + y12 V2 ……… (3)
I2 = y21 V1 + y22 V2 ………. (4)
Now, (1) and (2) can be rewritten as, I1 = – \(\frac{1}{B’} V_2 + \frac{A’}{B’} V_1\) …………. (5)
And I2 = C’V1 – D’ \(\left(- \frac{1}{B’} V_2 + \frac{A’}{B’} V_1\right) = \left(C’ – \frac{D’ A’}{B’}\right) V_1 + \frac{D’}{B’} V_2\) ………… (6)
Comparing equations (3), (4) and (5), (6), we get,
y11 = \(\frac{A’}{B’}\)
y12 = – \(\frac{1}{B’}\)
y21 = \(\left(C’ – \frac{D’ A’}{B’}\right)\)
y22 = \(\frac{D’}{B’}\).