The correct option is (b) z22 = 2.773 Ω
To explain I would say: z11 = \(\frac{V_1}{I_1}\) = 2 + 1 || [2+1 || (2+1)]
z11 = 2 + 1 || (2 + \(\frac{3}{4}\)) = 2 + \(\frac{1×\frac{11}{4}}{1+\frac{11}{4}} = 2 + \frac{11}{15}\) = 2.733
I0 = \(\frac{1}{1+3}\) I’0 = \(\frac{1}{4}\) I’0
And I’0 = 1 + \(\frac{11}{4}\) I1 = \(\frac{4}{15}\) I1
Or, I0 = \(\frac{1}{4} × \frac{4}{5} I_1 = \frac{1}{15} I_1\)
Or, V2 = I0 = \(\frac{1}{15} I_1\)
z21 = \(\frac{V_2}{I_1} = \frac{1}{15}\) = z12 = 0.0667
z22 = \(\frac{V_2}{I_2}\) = 2+1 || (2+1||3) = z11 = 2.733
∴ [z] = [2.733:0.0667; 0.0667:2.733] Ω.