Correct option is (c) 58
To explain: Sum of the numbers is 13.
Let one number be x. Other number is 13-x.
Sum of their reciprocals = \(\frac {13}{40}\)
\(\frac {1}{x} + \frac {1}{13-x}=\frac {13}{40}\)
\(\frac {13-x+x}{x(13-x)}=\frac {13}{40}\)
\(\frac {13}{13x-x^2}=\frac {13}{40}\)
\(\frac {1}{13x-x^2}=\frac {1}{40}\)
40=13x-x^2
x^2-13x+40=0
x^2-5x-8x+40=0
x(x-5)-8(x-5)=0
(x-8)(x-5)=0
x=8, 5
The number is 58 or 85.