Right choice is (b) 1
For explanation: Here 11^th term = \(\frac {1}{13}\)
13^thterm = \(\frac {1}{11}\)
Let the first term of the AP be a and common difference be d
T11 = a + (n – 1)d = \(\frac {1}{13}\)
T11 = a + (11 – 1)d = \(\frac {1}{13}\)
T11 = a + 10d = \(\frac {1}{13}\) (1)
T13 = a + (n – 1)d = \(\frac {1}{11}\)
T13 = a + (13 – 1)d = \(\frac {1}{11}\)
T13 = a + 12d = \(\frac {1}{11}\) (2)
Subtracting (1) from (2)
We get,
a + 12d – (a + 10d) = \(\frac {1}{11} – \frac {1}{13}\)
2d = \(\frac {2}{143}\)
d = \(\frac {1}{143}\)
Now, substituting value of d in equation 1
We get,
T11 = a + 10(\(\frac {1}{143}\)) = \(\frac {1}{13}\)
a = \(\frac {1}{143}\)
The 143^th term = \(\frac {1}{143}\) + 142\(\frac {1}{143} = \frac {(1+142)}{143} \) = 1