The correct answer is (b) True
Easiest explanation: Consider three points (-3, 3), (-1, 2) and (1, 1)
We know that, area of triangle = \(\frac {1}{2}\){x1 (y2 – y3 ) + x2 (y3 – y1 ) + x3 (y1 – y2)}
The area of triangle = \(\frac {1}{2}\) {-3(2 – 1) + (-1)(1 – 3) + 1(3 – 2)} = \(\frac {1}{2}\) {-3 – 1 + 3 + 3 – 2} = \(\frac {0}{2}\) = 0
Hence if the points are collinear the area of triangle is zero.