Correct choice is (b) \(\frac {3}{2}\) units
Easiest explanation: ABC is the triangle formed by the coordinates A (3, 3), B (9, 9) and C (4, 6) and DEF is the triangle formed by joining the midpoints of AC, BC, AB.
D is the midpoint of AC. Coordinates of D = \( ( \frac {x_1+x_2}{2}, \frac {y_1+y_2}{2} ) = ( \frac {3+4}{2}, \frac {3+6}{2} ) = ( \frac {7}{2}, \frac {9}{2} ) \)
E is the midpoint of AB. Coordinates of E = \( ( \frac {x_1+x_2}{2}, \frac {y_1+y_2}{2} ) = ( \frac {3+9}{2}, \frac {3+9}{2} ) = ( \frac {12}{2}, \frac {12}{2} ) \) = (6, 6)
F is the midpoint of BC. Coordinates of F = \( ( \frac {x_1+x_2}{2}, \frac {y_1+y_2}{2} ) = ( \frac {9+4}{2}, \frac {9+6}{2} ) = ( \frac {13}{2}, \frac {15}{2} ) \)
The area of triangle formed by D \( ( \frac {7}{2}, \frac {9}{2} ) \), E (6, 6) and F\( ( \frac {13}{2}, \frac {15}{2} ) \)
We know that, area of triangle = \(\frac {1}{2}\){x1 (y2 – y3 ) + x2 (y3 – y1 ) + x3 (y1 – y2 )}
The coordinates of vertices of the triangle are \( ( \frac {7}{2}, \frac {9}{2} ) \), (6, 6) and \( ( \frac {13}{2}, \frac {15}{2} ) \).
The area of triangle = \(\frac {1}{2} \{ \frac {7}{2}\) (6 – \(\frac {15}{2}\)) + 6(\(\frac {15}{2} – \frac {9}{2}\)) + \(\frac {13}{2} ( \frac {9}{2} – 6 ) \} \) = \(\frac {1}{2} \{ – \frac {21}{4}\) + 18 – \(\frac {39}{4} \} = \frac {3}{2} \) units