Right option is (d) (0, \( \frac {89}{18} \))
To explain I would say: Let the point on y-axis be (0, y)
Distance between (-1, 0) and (0, y) = \( \sqrt {(x_2-x_1)^2 + (y_2-y_1)^2} \)
= \( \sqrt {(0 + 1)^2 + (y-0)^2} \)
= \( \sqrt {y^2 + (1)^2} \)
= \( \sqrt {y^2 + 1} \)
Distance between (3, 9) and (0, y) = \( \sqrt {(x_2-x_1)^2 + (y_2-y_1)^2} \)
= \( \sqrt {(0-3)^2 + (y-9)^2} \)
= \( \sqrt {y^2-18y + 81 + (-3)^2} \)
= \( \sqrt {y^2-18y + 81 + 9} \)
= \( \sqrt {y^2-18y + 90} \)
Since, the point (0, y) is equidistant from (-1, 0) and (3, 9)
The distances will be equal
∴ \( \sqrt {y^2 + 1} = \sqrt {y^2-18y + 90} \)
Squaring on both sides we get,
y^2 + 1 = y^2 – 18y + 90
1 – 90 = -18y
-89 = -18y
y = \( \frac {89}{18} \)
The point is (0, \( \frac {89}{18} \))