Right choice is (b) tan (C/2) = (a – b)/(a + b) (cot(A – B)/2)
The explanation: According to the law of sines, in any triangle ABC,
a/sinA = b/sinB = c/sinC
So, a/b = sinA/sinB
(a + b)/(a – b) = (sinA + sinB)/( sinA – sinB)
=> (a + b)/(a – b) = (2 sin((a + b)/2) cos((a – b)/2))/ (2 sin((a + b)/2) sin((a – b)/2))
=> (a + b)/(a – b) = (tan(A + B)/2)/(tan(A – B)/2)
=> (tan(A + B)/2) = (a + b)/(a – b) (tan(A – B)/2)
=> (tan(π/2 + C/2)) = (a + b)/(a – b) (tan(A – B)/2)
=> cot (C/2) = (a + b)/(a – b) (tan(A – B)/2)
=> tan (C/2) = (a – b)/(a + b) (cot(A – B)/2).