Correct option is (c) 1/ (dy/dx)
To explain: It is given that y = (3x – 4)/(x + 2) ……….(1)
Now differentiating both the sides, we get that,
dy/dx = (x + 2)*3 – (3x – 4)/(x + 2)^2
= 10/(x + 2)^2
Again from (1) we get,
xy + 2y = 3x – 4
or, x = – 2(y + 2)
Thus dx/dy = -2* ((y – 3) – (y + 2))/ (y – 3)^2
Or, y – 3 = (3x – 4)/(x + 2) – 3
= -10/(x + 2)
Thus, dx/dy = 10/(-10/(x + 2))^2
= (x + 2)2/10, where,x ≠ 0 i.e. dx/dy ≠ 0
Therefore, dy/dx*dx/dy = 10/(x + 2)2 * -10/(x + 2)
= 1
=> dy/dx = 1/(dy/dx)