Right option is (b) 9 \(\frac{2}{3}\)
Best explanation: Using binomial theorem we know that (a + b)^3 = a^3 + 3ab^2 + 3a^2b + b^3
Therefore, (7 + 2)^3 = 7^3 + 2^3 + (3 x 7 x 2^2) + (3 x 2 x 7^2)
(9)^3 = 7^3 + 2^3 + 84 + (3 x 2 x 7^2)
729 = 7^3 + 2^3 + 84 + 294
7^3 + 2^3 + 84 = 435
Also 7^2 – 2^2 = (7 – 2)(7 + 2)
7^2 – 2^2 = (5)(9)
7^2 – 2^2 = 45
So \(\frac{7^3 + 2^3 + 84}{7^2-2^2}\) = 435 / 45
= 9 \(\frac{30}{45}\)
= 9 \(\frac{2}{3}\).