Correct option is (a) True
Explanation: The given statement is true. A function is invertible if it is bijective.
For one – one: Consider f(x1)=f(x2)
∴ 5x1+9=5x2+9
⇒x1=x2. Hence, the function is one – one.
For onto: For any real number y in the co-domain R, there exists an element x=\(\frac{y-9}{5}\) such that f(x)=\(f(\frac{y-9}{5})=5(\frac{y-9}{5})\)+9=y.
Therefore, the function is onto.