The correct choice is (c) 6
To explain: Given that, x=12 cosecθ and y=2 secθ
\(\frac{dx}{dθ}\)=-12 cosec θ cotθ
\(\frac{dy}{dθ}\)=2 tanθ secθ
\(\frac{dy}{dx}\)=\(\frac{dy}{dθ}.\frac{dθ}{dx}=\frac{2 \,tanθ \,secθ}{-12 \,cosec θ \,cotθ}\)=-\(\frac{1}{6} \frac{sinθ}{cos^2θ} × \frac{cosθ}{sin^2θ}\) = –\(\frac{cotθ}{6}\)
\(\frac{dy}{dx}]_{x=\frac{\pi}{4}}\)=\(-\frac{\frac{cot\pi}{4}}{6}=-\frac{1}{6}\)
Hence, the slope of normal at θ=π/4 is
–\(\frac{1}{slope \,of \,tangent \,at \,θ=\pi/4}=-\frac{-1}{\frac{1}{6}}\)=6