Right option is (b) x/√(x^2 + 2) dx
To elaborate: Let, y = f(x) = √(x^2 + 2)
So, f(x) = (x^2 + 2)^1/2
On differentiating it we get,
f’(x) = d/dx[(x^2 + 2)^1/2]
f’(x) = 1/2 * 1/√(x^2 + 2) * 2x
So f’(x) = x/√(x^2 + 2)
So the differential equation is:
dy = f’(x)dx
Hence, dy = x/√(x^2 + 2) dx