The correct option is (b) x1 < x2 ⇒ f(x1) ≥ f(x2) ∀ x1, x2 ∈ (a,b)
Easy explanation: The definition of monotonically decreasing function is if a function f : (a,b) → R is said to be monotonically decreasing on (a,b) if x1 < x2 ⇒ f(x1) ≥ f(x2) ∀ x1, x2 ∈ (a,b). Hence, the mathematical expression is x1< x2 ⇒ f(x1) ≥ f(x2) ∀ x1, x2 ∈ (a,b).