Right choice is (c) 0
The best explanation: The given determinant is f(r) = \(\begin{vmatrix}2r & x & n(n + 1) \\(6r^2 – 1) & y & n^2(2n + 3) \\(4r^3 – 2nr) & z & n^3(n + 1) \end {vmatrix}\)
Now, r = 1Σ^n (2r) = 2[(n(n + 1))/2] ……….(1)
= n^2 + n
r = 1Σ^n(6r^2 – 1) = 6[((n + 1)(2n + 1))/6] – n ……….(2)
= n(2n^2 + 2n + n + 1) – n
= 2n^3 + 2n^2 + n^2 + n – n
= 2n^3 + 3n^2
= r = 1Σ^n(4r^3 – 2nr) = n^3 (n + 1) ……….(3)
From (1), (2) and (3) we get
r = 1Σ^n f(x) = 0